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Abstract- 
Due to the degradation of observed image the noisy, blurred, distorted image can be occurred .To restore the 

image informationby conventional modelsmay not be accurate enough for faithful reconstruction of the original 

image. I propose the sparse representations to improve the performance of based image restoration. In this 

method the sparse coding noise is added for image restoration, due to this image restoration the sparse 

coefficients of original image can be detected. The so-called nonlocally centralized sparse representation 

(NCSR) model is as simple as the standard sparse representation model, fordenoising the image here we use the 

histogram clipping method by using histogram based sparse representation to  effectively reduce the noise and 

also implement the TMR filter for Quality image. Various types of image restoration problems, including 

denoising, deblurring and super-resolution, validate the generality and state-of-the-art performance of the 

proposed algorithm. 
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I. Introduction 
Image classification is one of the most important 

topics in computer vision. Recently, sparse coding 

technique attractsmore and more attention because of its 

effectiveness in extracting global properties from signals. It 

recovers a sparse linear representation of a query datum 

with respect to a set of non-parametric basis set, known as 

dictionary [3, 24]. In image classification problem, methods 

based on sparse coding or its variants mainly collect a set 

of image patches to learn the dictionariesby representing an 

image with a histogram of local features, Bag of Words 

(BoW) models [25] have shown excellent performance, 

especially its robustness to spatial variations. Considering 

spatial information with BoW, Lazebniket al. [10] built a 

spatial pyramid and extended the BoW model by 

partitioning the image into sub-regions and 

computinghistograms of local features. Yang et al. [29] 

further extended Spatial Pyramid Matching (SPM) by using 

sparse coding. They provided a generalized vector 

quantization for sparse coding followed by multi-scale 

spatial max pooling. 

Recent years have seen a great deal of renewed 

interests, enthusiasm and progress in sparsity-based image 

processing, particularly in image restoration. However, 

quite surprisingly, most published algorithms for image 

processing and analysis based themselves on the sparsity of 

luminance component of the image signal and overlooked 

the sparsities induced by spectral correlations. This leaves a 

slack in the performance of these algorithms. Mairalet. 

alextended the K-SVD algorithm to color images in the 

searching of a dictionary based sparse representation of 

color images [2]. In this paper, to pick up the performance 

slack we investigate ways to formulate spectral correlations 

into inherent and computationally amenable sparse 

representations of multispectral images. Our investigation 

begins with an image formation model of digital color  

 

 

 

 

 

 

Cameras. This image model and mild assumptions on 

illumination conditions and imaged objects reveal intrinsic 

sparsity properties of natural images. It turns out that 

theseallows the newly revealed sparsities of color images to 

be readily exploited by a `1 minimization process, or by 

linear programming algorithmically. Upon the conclusion 

of our technical development, it will become self-evident 

how the new results of this paper can be integrated into the 

general framework of image restoration and used as strong  

domainknowledge toimprove the solution of the 

corresponding inverse problem. 

In this paper we improve the sparse representation 

performanceby proposing a nonlocallycentralized sparse 

representation (NCSR) model. To faithfully reconstruct the 

original image, the sparse code αy [refer to Eq. (3)] should 

be as close as possible to the sparse codes αx [refer to Eq. 

(2)] of the original image. In other words, the difference 

υα= αy –αx(called as sparse coding noise, SCN in short, in 

this work) should be reduced and hence the quality of 

reconstructed image ˆx = _αy can be improved because ˆx 

− x ≈ _αy −_αx = _υα. To reduce the SCN, we centralize 

the sparse codes to some good estimation of αx. In practice, 

a good estimation of αx can be obtained by exploiting the 

rich amount of nonlocal redundancies in the observed 

image 

The proposed NCSR model can be solved effectively 

byconventional iterative shrinkage algorithm [9], which 

allows the remainder of the paper has the following flow of 

presentation. The image formation model is reviewed in 

Section II, which leads to the sparse representation that is 

detailed in Section III. Typical applications of color image 

denoisingand deconvolution are investigated in Section IV. 

And finally, Section V concludes the paper. 
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II. NONLOCALLY CENTRALIZED 

SPARSEREPRESENTATION (NCSR) 
Following the notation used in [19], for an image x ∈ 

_N, let xi = Rix denote an image patch of size√n×√n 

extracted at location i, where Riis the matrix extracting 

patch xi from x at location i. Given an dictionary _ ∈ 

_n×M, n ≤ M, each patch can be sparsely represented as xi 

≈ _αx,iby solving an l1-minimization problem αx,i= 

argminαi{||xi − _αi||22+λ||αi||1}. Then the entire image x 

can be represented by the set of sparse codes {αx,i}. The 

patches can be overlapped to suppress the boundary 

artifacts, and we obtain a redundant patch-based 

representation. Reconstructing x from {αx,i} is an over-

determined system, and a straightforward least-square 

solution is [19]: x ≈ (_Ni=1 RTiRi )−1_Ni=1 (RTi _αx,i ). 

For the convenience of expression, we let 

 

 

(1) 

 

 

Whereαx denotes the concatenation of all αx,i. The above 

equation is nothing but telling that the overall image is 

reconstructed by averaging each reconstructed patch of xi. 

In the scenario of image restoration (IR), the observed 

image is modeled as y = Hx+ υ. The sparsity-based IR 

method recovers x from y by solving the following 

minimization problem: 

(2) 

The image x is then reconstructed as ˆx = αy. 

 

2.1. Sparse Coding Noise: 

 
In order for an effective IR, the sparse codes αy obtained 

by solving the objective function in Eq. (5) are expected to 

be as close as possible to the true sparse codes αx of the 

original image x. However, due to the degradation of the 

observed image y (e.g., noisy and blurred), the sparse code 

αy will deviate from αx, and the IR quality depends on the 

level of the sparse coding noise (SCN), which is defined as 

the difference between αy and αx 

                (3) 

ImageLena as an example. In the first experiment, we add 

Gaussian white noise to the original image x to get the 

noisy image y (the noise level σn= 15). Then we compute 

αx and αy by solving Eq. (2) and Eq. (5), respectively. The 

DCT bases are adopted in the experiment. Then the SCN 

υα is computed. In Fig. 2(a-1), we plot the distribution of 

υα corresponding to the 4th atom in the dictionary. We also 

plot these distributions in log domain in Fig. 2(b-1) ∼ (b-3). 

This observation motivates us to model υα with a Laplacian 

prior, as will be further discussed in Section III-A. 

 

2.2. Modeling of NCSR: 
 

The definition of SCN υα indicates that by suppressing the 

SCN υα we could improve the IR output ˆx. However, the 

difficulty lies in that the sparse coding vector αx is 

unknown so that υα cannot be directly measured. 

Nonetheless, if we could have some reasonably good 

estimation of αx, denoted by β, available, then αy − β can 

be a good estimation of the SCN υα. To suppress υα and 

improve the accuracy of αy and thus further improve the 

objective function of Eq., we can propose the following 

centralized sparse representation (CSR) 

(4) 

Whereβiis some good estimation of αi, γ is the 

regularization parameter and p can be 1 or 2. In the above 

CSR model, while enforcing the sparsity of coding 

coefficients αi, the sparse codes are also centralized to 

some estimate of αx (i.e., β) so that SCN υα can be 

suppressed. One important issue of sparsity-based IR is the 

selection of dictionary _. 

. Hence we propose the following sparse coding model: 

       (5) 

 

2.3. Nonlocal Estimate of Unknown Sparse Code: 
 

Generally, there can be various ways to make an estimate 

of αx, depending on how much the prior knowledge of αx 

wehave. If we have many training images that are similar to 

the original image x, we could learn the estimate β of αx 

from the training set. However, in many practical situations 

the training images are simply not available. On the other 

hand, the strong nonlocal correlation between the sparse 

coding coefficients, as shown in Fig. 1, allows us to learn 

the estimate β from the input data. Based on the fact that 

natural images often contain repetitive structures, i.e., the 

rich amount of nonlocal redundancies [30], we search the 

nonlocal similar patches to the given patch iin a large 

window centered at pixel i. For higher performance, the 

search of similar patches can also be carried out across 

different scales at the expense of higher computational 

complexity, as shown in [31]. Then a good estimation of αi, 

i.e., βi, can be computed as the weighted average of those 

sparse codes associated with the nonlocal similar patches 

(including patch i)to patch i. For each patch xi , we have a 

set of its similar patches, denoted by i. Finally βican be 

computed from the sparse codes of the patches within 

i.Denote by αi,qthe sparse codes of patch xi,qwithin set i. 

Then βican be computed as the weighted average of αi,q 

                 (6) 

Whereωi,qis the weight. Similar to the nonlocal means 

approach [30], we set the weights to be inversely 

proportional to the distance between patches xi and xi,q 

        (7) 

 

III. ALGORITHM OF NCSR 
3.1. Parameters Determination: 
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In Eq. (8) or Eq. (11) the parameter λ that balances the 

fidelity term and the centralized sparsity term should be 

adaptively determined for better IR performance. In this 

subsection we provide a Bayesian interpretation of the 

NCSR model, which also provides us an explicit way to set 

the regularization parameter λ. In the literature of wavelet 

denoising, the connection between Maximum a Posterior 

(MAP) estimator and sparse representation has been 

established [28], and here we extend the connection from 

the local sparsity to nonlocally centralized sparsity. For the 

convenience of expression, let’s define θ = α − β. For a 

given β, the MAP estimation of θ can be formulated as 

(8) 

The likelihood term is characterized by the Gaussian 

distribution where θ and β are assumed to be independent. 

In the prior probability P(θ ), θ reflects the variation of α 

from its estimation β. If we take β as a very good 

estimation of the sparse coding coefficient of unknown true 

signal, then θy= αx – β is basically the SCN associated with 

αy, and we have seen in Fig. 2 that the SCN signal can be 

well characterized by the Laplacian distribution. Thus, we 

can assume that θ follows i.i.d. Laplacian distribution, and 

the joint prior distribution P(θ ) can be modeled as 

(9) 

Hence, for a given β the sparse codes α can then be 

obtained by minimizing the following objective function 

Compared with Eq. (8), we can see that the l1-norm (i.e.,p= 

1) should be chosen to characterize the SCN term αi−βi. 

Comparing Eq. (16) with Eq. (8), we have 

      (10) 

 

3.3. Histogram-Based SparseRepresentation: 

 
Histogram-based representations have been widely used 

with the feature descriptors, e.g., HOG [4], BoW [25], and 

GLOH [17]. It provides very compact representationand 

captures global frequency of low-level features. In this 

section, we present a framework that determines the 

component-level importance of histogram information and 

Combines it with a sparse representation, which is referred 

to as Histogram-Based Component-Level Sparse 

Representation (HCLSP) for the rest of this paper. 

 

3.3.1. Component Level Importance: 
Suppose we have a training set of image groups. 

Eachimage group is defined as a class. For the training set, 

we have C classes, for each class index p = 1; : : : ;C. 

DenoteX(p) = [x(p)1 ; : : : ; x(p) n ] in Rm_nto be a set of 

training samples from class p, with each individual sample 

x(p)iin Rm. The dictionaries trained from class p are 

represented by D (p). Given the training data and the 

dictionaries, the sparse coefficient vector _ can be obtained 

by solving equation (2) using LARS-Lasso or other 

standard algorithms. Denote the reconstruction error for the 

training set X (p) by using the dictionaries D (p) as: 

 (11)3.4. 

Histogram Equalization: 

Histogram equalization is a technique for adjusting image 

intensities to enhance contrast. Let f be a given image 

represented by mc matrix of integer pixel intensities 

ranging from 0 to L − 1. L is the number of possible 

intensity values. 

 

IV. EXPERIMENTAL RESULTS 
To verify the IR performance of the proposed NCSR 

algorithm we conduct extensive experiments on image 

denoising, deblurring and super-resolution. The basic 

parameter setting of NCSR is as follows: the patch size is 7 

× 7 and K = 70. For image denoising, δ = 0.02, L = 3, and J 

= 3; for image deblurring and super-resolution, δ = 2.4, L = 

5, andJ = 160. To evaluate the quality of the restored 

images, the PSNR and the recently proposed powerful 

perceptual quality metric FSIM [32] are calculated. Due to 

the limited page space, we only show part of the results in 

this paper, and all the experimental results can be 

downloaded on the clearer and much more details are 

recovered. Considering that the estimated kernel will have 

bias from the true unknown blurring kernel, these 

experiments validate that NCSR is robust to the kernel 

estimation errors. 

 

       Original image                  Output image    

 

 

 

 

 

 

 

 

Fig .1 conversion of image to gray scale image 

 

We also test the proposed NCSR deblurring method on real 

motion blurred images. Since the blur kernel estimation is a 

non-trivial task, we borrowed the kernel estimation method 

from [34] to estimate the blur kernel and apply the 

estimated blur kernel in NCSR to restore the original 

images. In Fig. 8 we present the deblurring results by the 

blind deblurringmethod of [34] and the proposed NCSR 

method. We can seethat the images restored by our 

approach are much clearer and much more details are 

recovered. Considering that the estimated kernel will have 

bias from the true unknown blurring kernel, these 

experiments validate that NCSR is robust to the kernel 

estimation errors 
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Original ImageHistogramSpacialadaptive 
equalizationhistogram 
equalization 
 

 

 

SpacialpreservingequalizationHistogram clipping 

Fig.2 image denoisingoutoutimage with the quality  
 

 

 

 

Zoom before Iterated TMR    Zoom after Iterated        
                                                   TMR 

Fig.3TMR filtered Image 
 

 

 

 

Iterated TMR Filter of Image (b) Iterated TMR   
Filter of(c) 

 

 

 

Iterated TMR Filter of ImageIterated TMR filter         

of (d)                                        of image (e) 

Fig.4Denoising image 

 

V. CONCLUSION 
In this paper we presented a novel nonlocally 

centralized sparse representation (NCSR) model for image 

restoration. The sparse coding noise (SCN), which is 

defined as the difference between the sparse code of the 

degraded image and the sparse code of the unknown 

original image, should be minimized to improve the 

performance of sparsity-based image restoration. To this 

end, we proposed a centralized sparse constraint, which 

exploits the image nonlocal redundancy, to reduce the 

SCN. The Bayesian interpretation of the NCSR model was 

provided and this endows the NCSR model an iteratively 

reweighted implementation. An efficient iterative shrinkage 

function was presented for solving the l1-regularized 

NCSR minimization problem. Experimental results on 

image denoising, deblurring and super-resolution 

demonstrated that the NCSR approach can achieve highly 

competitive performance to other leading denoising 

methods, and outperform much other leading image 

deblurring and super-resolution methods. And also 

implement the histogram clipping and TMR filter for 

Quality of picture. 
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